
HTML Validation of Context-Free LanguagesAnders Møller⋆ and Mathias Shwarz⋆Aarhus University, Denmark{amoeller,shwarz}�s.au.dkAbstrat. We present an algorithm that generalizes HTML validationof individual douments to work on ontext-free sets of douments. To-gether with a program analysis that soundly approximates the outputof Java Servlets and JSP web appliations as ontext-free languages, weobtain a method for statially heking that suh web appliations neverprodue invalid HTML at runtime. Experiments with our prototype im-plementation demonstrate that the approah is useful: On 6 open soureweb appliations onsisting of a total of 104 pages, our tool �nds 64 er-rors in less than a seond per page, with 0 false positives. It produesdetailed error messages that help the programmer loate the soures ofthe errors. After manually orreting the errors reported by the tool, thesoundness of the analysis ensures that no more validity errors exist inthe appliations.1 IntrodutionAn HTML doument is valid if it syntatially onforms to a DTD for one of theversions of HTML. Sine the HTML spei�ations only presribe the meaningof valid douments, invalid HTML douments are often rendered di�erently,depending on whih browser is used [1℄. For this reason, areful HTML doumentauthors validate their douments, for example using the validation tool providedby W3C1. An inreasing number of HTML douments are, however, produeddynamially by programs running on web servers. It is well known that errorsaught early in development are heaper to �x. Our goal is to develop a programanalysis that an hek statially, that is, at the time programs are written, thatthey will never produe invalid HTML when running. We want this analysis tobe sound, in the sense that whenever it laims that the given program has thisproperty that is in fat the ase, preise meaning that it does not overwhelm theuser with spurious warnings about potential invalidity problems, and e�ientsuh that it an analyze non-trivial appliations with modest time and spaeresoures. Furthermore, all warning messages being produed must be usefultoward guiding the programmer to the soure of the potential errors.The task an be divided into two hallenges: 1) Web appliations typiallygenerate HTML either by printing page fragments as strings to an output stream
⋆ Supported by The Danish Researh Counil for Tehnology and Prodution,grant no. 274-07-0488.1 http://validator.w3.org

(as in e.g. Java Servlets) or with template systems (as e.g. JSP, PHP, or ASP).In any ase, the analysis front-end must extrat a formal desription of the setof possible outputs of the appliation, for example in the form of a ontext-free grammar. 2) The analysis bak-end must analyze this formal desription ofthe output to hek that all strings that it represents are valid HTML. Severalexisting tehniques follow this pattern, although onsidering XHTML instead ofHTML [6, 8℄. In pratie, however, many web appliations output HTML data,not XHTML data, and the existing tehniques � with the exeption of the workby Nishiyama and Minamide [10℄, whih we disuss in Setion 2 � do not workfor HTML.The key di�erenes between HTML and XHTML are that the former allowsertain tags to be omitted, for example the start tags <html> and <tbody> andthe end tags </html> and </p>, and that it uses tag inlusions and exlusions, forexample to forbid deep nesting of a elements. This extra �exibility of HTML ispreisely what makes it popular, ompared to its XML variant XHTML. On theother hand, this �exibility means that the proess of heking well-formedness,i.e. that a doument de�nes a proper tree struture, annot be separated from theproess of heking validity, i.e. that the tree struture satis�es the requirementsof the DTD.In this paper, we present an algorithm that, given as input a ontext-freegrammar G and an SGML DTD D (one of the DTDs that exist for the di�erentversions of HTML2), heks whether every string in the language of G is validaording to D, written L(G) ⊆ L(D). The key idea in our approah is a gen-eralization of a ore algorithm for SGML parsing [4,13℄ to work on ontext-freesets of douments rather than individual douments.1.1 Outline of the PaperThe paper is organized as follows. We �rst give an overview of related approahesin Setion 2. In Setion 3 we then present a formal model of SGML/HTMLvalidation that aptures the essene of the features that distinguish it fromXML/XHTML validation. Based on this model, in Setion 4 we present our gen-eralization for validating ontext-free sets of douments. We have implementedthe algorithm together with an analysis front-end for Java Servlets and JSP,whih onstitute a widely used platform for server-based web appliation de-velopment. We fous on the bak-end in this paper. In Setion 5, we report onexperiments on a range of open soure web appliations. Our results show thatthe algorithm is fast and able to pinpoint programming errors. After manuallyorreting the errors based on the messages generated by the tool, the analysis isable to prove that the output will always be valid HTML when the appliationsare exeuted.2 The HTML 5 language urrently under development will likely evoke renewed in-terest in HTML. Although it tehnially does not use SGML, its syntax loselyresembles that of the earlier versions. 2

<%� page import="java.util.*, org.example" %><%� taglib prefix="" uri="http://java.sun.om/jstl/ore" %><html><head><meta name="desription" ontent="Joke Colletion"><title>Jokes</title><%! List<Joke> js = Jokes.get();%><body><table><tr><th>Question<th>Punh line</tr><% if (js.size() > 0) {request.setParameter("Jokes", js); %><:forEah items="${Jokes}" var="joke"><tr><td><:out value="${joke.question}"/><td><:out value="${joke.punhline}"/></tr></:forEah><% } else {out.print("<td>No more jokes</tr>");} %></table></body></html>Fig. 1. A JSP page that uses the JSTL tag library and embedded Java ode. Theexample takes advantage of SGML features suh as tag omission and inlusions.1.2 ExampleFigure 1 shows an example of a JSP program that outputs a dynamially gen-erated table from a list of data using a ombination of many of the JSP andSGML features that appear in typial appliations. The meta element is notpart of the ontent model of head, but it is allowed by an SGML inlusion rule.The body element ontains a table where both the start and the end tag of thetbody element are omitted, and a parser needs to insert those to validate a gen-erated doument. Similarly, all td and th end tags are omitted. The ontentsof the table are generated by a ombination of tags from JSP Standard Tag Li-brary, embedded Java ode that prints to the output stream, and ordinary JSPtemplate ode.The stati analysis that we present is able to soundly hek that the outputfrom suh ode is always valid aording to e.g. the HTML 4.01 Transitionalspei�ation.2 Related WorkPrevious work on reasoning about programs that dynamially generate semi-strutured data has foused on XML [9℄, not SGML, despite the fat that theSGML language HTML remains widely used. (Sine XML languages are essen-tially the sublass of SGML languages that do not use the tag omission andexeption features, our algorithm also works for XML.) Most losely relatedto our approah is the work by Minamide et al. [7, 8, 10℄ and Kirkegaard andMøller [6℄. 3

In [7℄ ontext-free grammars are derived from PHP programs. From suh agrammar, sample douments are derived and proessed by an ordinary HTMLor XHTML validator. Unless the nesting depth of the elements in the generateddouments is bounded, this approah is unsound as it may miss errors. Later, analternative grammar analysis was suggested for soundly validating dynamiallygenerated XML data [8℄. That algorithm relies on the theory of balaned gram-mars over an alphabet of tag names, whih does not easily generalize to handlethe tag omission and inlusion/exlusion features that exist in HTML. The ap-proah in [6℄ is omparable to [8℄, however onsidering the more �ne-grainedalphabet of individual Uniode haraters instead of entire tag names and usingXML graphs for representing sets of XML douments.Yet another grammar analysis algorithm is presented by Nishiyama and Mi-namide [10℄. They de�ne a sublass of SGML DTDs that inludes HTML andshows a translation into regular hedge grammars, suh that the validation prob-lem redues to heking inlusion of a ontext-free language in a regular language.That approah has some limitations, however: 1) it does not support start tagomission, although that feature of SGML is used in HTML (e.g. tbody andhead); 2) the exlusion feature is handled by a transformation of the DTD thatmay lead to an exponential blow-up prohibiting pratial use; and 3) the inlu-sion feature is not supported. The alternative approah we suggest overomesall these limitations.The abstrat parsing algorithm by Doh et al. [3℄ and the grammar-basedanalysis by Thiemann [11℄ are also based on the idea of generalizing existingparsing algorithms. The approah in [3℄ relies on abstrat interpretation with adomain of LR(k) parse staks onstruted from an LR(k) grammar for XHTML,and [11℄ is based on Earley's parsing algorithm. By instead using SGML parsingas a starting point, we avoid the abstration and we handle the speial featuresof HTML: Given a ontext-free grammar desribing the output of a program,our algorithm for heking that all derivable strings are valid HTML is bothsound and omplete.3 Parsing HTML DoumentsAlthough HTML is based on the SGML standard [4℄ it uses only a small sub-set of the features of the full standard. SGML languages are formally desribedusing the DTD language (not to onfuse with the DTD language for XML).Suh a desription provides a formal desription for the parser on how a dou-ment is parsed from its textual form into a tree struture. Spei�ally, in SGMLboth start and end tags may be omitted if 1) allowed by the DTD, and 2) theomission does not result in ambiguities in the parsing of the doument. TheDTD desription provides the ontent models, that is, the allowed hildren ofeah element, as deterministi regular expressions over sequenes of elements.Furthermore speial exeptions, alled inlusions and exlusions, are possible forallowing additional element hildren or disallowing nesting of ertain elements.An inlusion rule permits elements anywhere in the desendant tree even if not4

allowed by the ontent model expressions. Conversely, an exlusion rule prohibitselements, overriding the ontent model expressions and inlusions.Consider a small example DTD:<!ELEMENT inventory - - (item*) +(note)><!ELEMENT item - O (#PCDATA)><!ELEMENT note - O (#PCDATA)>In eah element delaration, O means �optional� and - means �required�, for thestart tag and the end tag, respetively. This DTD delares an element inventorywhere the start and end tags are both required. (Following the usual SGML ter-minology, an element generally onsists of a start tag and its mathing end tag,although ertain tags may be omitted in the textual representation of the do-uments.) The ontent model of inventory allows a sequene of item elementsas hildren in the doument tree. In addition, note is inluded suh that noteelements may be desendants of inventory elements even though they are notallowed diretly in the ontent models of the desendants. The seond line de-lares an element item that requires a start tag but allows omission of the endtag. The ontent model of item allows only text (PCDATA) and no hild ele-ments in the doument tree. Finally, the element note is also delared with endtag omission and PCDATA ontent. An example of a valid doument for thisDTD is the following:<inventory><item>gadget<item>widget</inventory>The parser inserts the omitted end tags for item to obtain the following dou-ment, whih is valid aording to the DTD ontent models for inventory anditem:<inventory><item>gadget</item><item>widget</item></inventory>Beause of the inlusion of note elements in the delaration of inventory, thefollowing doument is also parsed as a valid instane:<inventory><item>gadget<note>new</note><item>widget</inventory>SGML is similar to XML but it has looser requirements on the syntax of theinput douments. For the features used by HTML, the only relevant di�erenesare that XML does not support tag omissions nor ontent model exeptions.We onsider only DTDs that are ayli:De�nition 1. An SGML DTD is ayli if it satis�es the following requirement:For elements that allow end tag omissions there must be a bound on the possibledepth of the diret nesting of those elements. That is, if we reate a diretedgraph where the nodes orrespond to the delared elements whose end tags maybe omitted and there is an edge from a node A to a node B if the ontent modelof A ontains B, then there must be no yles in this graph.This requirement also exists in Nishiyama and Minamide's approah [10℄, andit is ful�lled by all versions of the HTML DTD. Contrary to their approah wedo not impose any further restritions and our algorithm thus works for all theHTML DTDs without any limitations or rewritings.5

3.1 A Model of HTML ParsingAs our algorithm is a generalization of the traditional SGML parsing algorithmwe �rst present a formal desription of the essene of that algorithm. We baseour desription on the work by Warmer and van Egmond [13℄. The algorithmprovides the basis for explaining our main ontribution in the next setion.We abstrat away from SGML features suh as text (i.e. PCDATA), om-ments, and attributes. These features are straightforward to add subsequently.Furthermore, a lexing phase allows us to onsider strings over the alphabet ofstart and end tags, written <a> and , respetively, for every element a de-lared in the DTD. (This lexing phase is far from trivial; our implementation isbased on the tehnique used in [6℄.) More formally, we onsider strings over thealphabet Σ = {<a> | a ∈ E} ∪ { | a ∈ E} where E is the set of delaredelement names in the DTD. We assume that root ∈ E is a pseudo-element rep-resenting the root node of the doument, with a ontent model that aepts asingle element of any kind (or, one spei�, suh as html for HTML). The setsof inluded and exluded elements of an element a ∈ E are denoted Ia and Ea,respetively.For simpliity, we represent all ontent models together as one �nite-stateautomaton [5℄ de�ned as follows:De�nition 2. A ontent model automaton for a DTD D is a tuple (Q,E,
[qa]a∈E , F, δ) where Q is a set of states, its alphabet is E as de�ned above, [qa]a∈Eis a family of initial states (one for eah delared element), F ⊆ Q is a set ofaept states and δ : Q ×Σ →֒ Q is a partial transition funtion (with ⊥ repre-senting unde�ned).Following the requirement from the SGML standard that ontent models must beunambiguous, this ontent model automaton an be assumed to be deterministiby onstrution. Also, we assume that all states in the automaton an reah someaept state. Eah state in the automaton uniquely orresponds to a position ina ontent model expression in D.SGML douments are parsed in a single left-to-right san with a look-aheadof 1. The state of the parser is represented by a ontext stak. The set of possibleontexts is H = E × Q × P(E) × P(E). (P(E) denotes the powerset of E.)We refer to the ontext cn = (a, q, ι, η) at the top of a stak c1 · · · cn ∈ H∗as the urrent ontext, and a, q, ι, and η are then the urrent element, theurrent state, the urrent inlusions, and the urrent exlusions, respetively.An element b is permitted in the urrent ontext (a, q, ι, η) if δ(q, b) 6= ⊥. Werefer to a tag a just below another tag b in the ontext stak as b's parent. Wesay that OmitStart(a, q) holds if the start tag of a elements may be omittedaording to D when the urrent state is q, and, similarly, OmitEnd(a, q) holds ifthe end tag of a elements may be omitted in state q. (The preise rules de�ningOmitStart and OmitEnd from D are quite ompliated; we refer to [4,13℄ for thedetails.) The urrent inlusions and exlusions re�et the sets of inluded andexluded elements, respetively. These two sets an in priniple be determined6

1. funtion ParseD(p ∈ H∗, x ∈ Σ∗) :2. if |x| = 0 then3. // reahed end of input4. return p5. else if |p| = 0 then6. // empty stak error7. return ©8. let p1 · · · pn−1 · (an, sn, ιn, ηn) = p9. let x1 · · ·xm = x10. if x1 = <a> ∧ a /∈ ηn for some a ∈ E then11. // reading a non-exluded start tag12. if δ(sn, a) 6= ⊥ then13. // the start tag is permitted by the ontent model, push onto stak and proeed14. return ParseD

(

p1 · · · pn−1 · (an, δ(sn, a), ιn, ηn) · (a, qa, ιn ∪ Ia, ηn ∪Ea), x2 · · ·xm

)15. else if a ∈ ιn then16. // the start tag is permitted by inlusion, push onto stak and proeed17. return ParseD

(

p1 · · · pn · (a, qa, ∅, ηn ∪Ea), x2 · · ·xm

)18. else if x1 = ∧ a = an ∧ sn ∈ F for some a ∈ E then19. // reading an end tag that is permitted, pop from stak and proeed20. return ParseD

(

p1 · · · pn−1, x2 · · · xm

)21. else if OmitEnd(an, sn) then22. // insert omitted end tag, then retry23. return ParseD(p, </an> · x)24. else if ∃a′ ∈ E : OmitStart(a′, sn) then25. // insert omitted start tag, then retry26. return ParseD(p, <a′> · x)27. else28. // parse error29. return Fig. 2. The ParseD funtion for heking validity of a given doument.from the element names appearing in the ontext stak, but we maintain themin eah ontext for reasons that will beome lear in Setion 4.Informally, when enountering a start tag <a> that is permitted in the urrentontext, its ontent automaton state is modi�ed aordingly, and a new ontextis pushed onto the stak. When an end tag is enountered, the urrentontext is popped o� the stak if it mathes the element name a.An end tag may be omitted only if it is followed by either the end tag ofanother open element or a start tag that is not allowed at this plae. A start tagmay be omitted only if omission does not ause an ambiguity during parsing.These onditions, whih de�ne OmitEnd and OmitStart, an be determinedfrom the urrent state and either the next tag in the input or the urrent elementon the stak, respetively, without onsidering the rest of the parse stak andinput. Moreover, OmitStart has the property that no more than |E| omittedstart tags an be inserted before the next tag from the input is onsumed.Our formalization of SGML parsing is expressed as the funtion ParseD :
H∗ ×Σ∗ →

(

H∗ ∪ { ,©}
) shown in Figure 2. The result © arises if an end tagis enountered while the stak is empty, and represents other kinds of parseerrors. In this algorithm, OmitEnd and OmitStart allow us to abstrat awayfrom the preise rules for tag omission, to keep the presentation simple. Thealgorithm aptures an essential property of SGML parsing: a substring x ∈ Σ∗7

of a doument is parsed relative to a parse stak p ∈ H∗ as de�ned above, and itoutputs a new parse stak or one of the error indiators© and . We distinguishbetween the two kinds of errors for reasons that beome lear in Setion 4.With this, we an de�ne validity of a doument relative to the DTD D:De�nition 3. A string x ∈ Σ∗ is a valid doument if
ParseD

(

(root, qroot, ∅, ∅), x
)

= (root, q, ∅, ∅)for some q ∈ F .The ParseD funtion has some interesting properties that we shall need inSetion 4:Observation 4 Notie that the ParseD funtion either returns diretly or viaa tail all to itself. Let (p1, x1), (p2, x2), . . . be the sequene of parameters to
ParseD that appear if exeuting ParseD(p1, x1) for some p1 ∈ H∗, x1 ∈ Σ∗.Now, beause the DTD is ayli, for all i = 1, 2, . . . we have |xi+|E|| < |xi|,that is, after at most |E| reursive alls, one more input symbol is onsumed.Moreover, in eah step in the reursion sequene, the deisions made dependonly on the urrent ontext and the next input symbol.4 Parsing Context-Free Sets of DoumentsWe now show that the parsing algorithm desribed in the previous setion anbe generalized to work for sets of douments, or more preisely, ontext-freelanguages over the alphabet Σ. The resulting algorithm determines whether ornot all strings in a given language are valid aording to a given DTD. Thelanguages are represented as ontext-free grammars that are onstruted by theanalysis front-end from the programs being analyzed.The de�nitions of ontext-free grammars and their languages are standard:De�nition 5. A ontext-free grammar (CFG) is a tuple G = (N,Σ, P, S) where
N is the set of nonterminal symbols, Σ is the alphabet (of start and end tagsymbols, as in Setion 3.1), P is the set of produtions of the form A → r where
A ∈ N , r ∈ (Σ ∪ N)∗, and S is the start nonterminal. The language of G is
L(G) = {x ∈ Σ∗ | S ⇒∗ x} where ⇒∗ is the re�exive transitive losure of thederivation relation ⇒ de�ned by u1Au2 ⇒ u1ru2 whenever u1, u2 ∈ (Σ ∪ N)∗and A → r ∈ P .De�nition 6. A CFG G is valid if x is valid for every x ∈ L(G).To simplify the presentation we will assume that G is in Chomsky normalform, so that all produtions are of the form A → s or A → A′A′′ where s ∈ Σand A,A′, A′′ ∈ N , and that there are no useless nonterminals. It is well-knownhow to transform an arbitrary CFG to this form [5℄. We an disregard the emptystring sine that is never valid for any DTD, and the empty language is triviallyvalid. 8

The idea behind the generalization of the parse algorithm is to �nd out forevery ourrene of an alphabet symbol s in the given CFG whih ontext staksmay appear when enountering s during parsing of a string. The ontext staksmay of ourse be unbounded in general. However, beause of Observation 4 weonly need to keep trak of a bounded size top (i.e. a post�x) of eah ontext stak,and hene a bounded number of ontext staks, at every point in the grammar.4.1 Generating ConstraintsTo make the idea more onrete, we de�ne a family of ontext funtions, one foreah nonterminal A ∈ N . Eah is a partial funtion that takes as input a ontextstak and returns a set of ontext staks:
CA : H∗ →֒ P(H∗)Informally, the domain of CA onsists of the ontext staks that appear duringparsing when entering a substring derived from A, and the o-domain similarlyonsists of the ontext staks that appear immediately after the substring hasbeen parsed. Formally, assume x ∈ L(G) suh that S ⇒∗ u1Au2 ⇒∗ u1yu2 = x,that is, the nonterminal A is used in the derivation of x, and y is the substringderived from A. The domain dom(CA) then ontains the ontext stak p thatarises after parsing of u1, that is, p = ParseD

(

(root, qroot, ∅, ∅), u1

)

∈ dom(CA).Similarly, CA(p) ontains the ontext stak that arises after parsing of u1y, thatis, ParseD

(

(root, qroot, ∅, ∅), u1y
)

= ParseD(p, y) ∈ CA(p) if p /∈ { ,©}. Asexplained in detail below, we trunate the ontext staks and only store the topof the staks in these sets. To obtain an e�ient algorithm, we trunate as muhas possible and exploit the fat that ParseD returns © if a too short ontextstak is given.The ontext funtions are de�ned from the DTD as a solution to the set ofonstraints de�ned by the following three rules:�1 Following De�nition 3, parsing starts with the initial ontext stak at thestart nonterminal S and must end in a valid �nal stak:
CS(root, qroot, ∅, ∅) ⊆ {(root, q, ∅, ∅) | q ∈ F}�2 For every prodution of the form A → s in P where s ∈ Σ, the ontextfuntion for A respets the ParseD funtion, whih must not return or ©:

∀p ∈ dom(CA) : p
′ /∈ { ,©} ∧ p′ ∈ CA(p) where p′ = ParseD(p, s)�3 For every prodution of the form A → A′A′′ in P , the entry ontext staks of

A are also entry ontext staks for A′, the exit ontext staks for A′ are alsoentry ontext staks for A′′, and the exit ontext staks for A′′ are also exitontext staks for A. However, we allow the ontext staks to be trunatedwhen propagated from one nonterminal to the next:
∀p ∈ dom(CA) : ∃p1, p2 : p = p1 · p2 ∧ p2 ∈ dom(CA′) ∧

∀p′2 ∈ CA′(p2) : ∃t1, t2 : p1 · p′2 = t1 · t2 ∧ t2 ∈ dom(CA′′) ∧
∀t′2 ∈ CA′′(t2) ⇒ t1 · t′2 ∈ CA(p)9

Note that rule �3 permits the ontext staks to be trunated; on the other hand,rule �2 ensures that the staks are not trunated too muh sine that would leadto the error value ©.Theorem 7. There exists a solution to the onstraints de�ned by the rules abovefor a grammar G if and only if G is valid.Proof. See the appendix.4.2 Solving ConstraintsIt is relatively simple to onstrut an algorithm that searhes for a solutionto the olletion of onstraints generated from a CFG by the rules de�ned inSetion 4.1. Figure 3 shows the pseudo-ode for suh an algorithm, ParseCFGD.We write w defsA for w ∈ P , A ∈ N if A appears on the left-hand side of
w, and w usesA if A appears on the right-hand side of w. The solution beingonstruted is represented by the family of ontext funtions, denoted [CA]A∈N .The idea in the algorithm is to searh for a solution by trunating the ontextstaks as muh as possible, iteratively trying longer ontext staks, until thespeial error value © no longer appears. The algorithm initializes [CA]A∈N online 6 and iteratively on lines 9�58 extends these funtions to build a solution.The worklist W (a queue, without dupliates) onsists of produtions that needto be proessed beause the domains of the ontext funtions of their left-hand-side nonterminals have hanged. The funtion ∆ maintains for eah nonterminala set of ontext staks that are known to lead to ©.Eah prodution in the worklist of the form A → s is parsed aording to rule
§2 on lines 14� 26, relative to eah ontext stak p in dom(CA). If this resultsin ©, the orresponding ontext stak is added to ∆(A), and all produtionsthat use A are added to the worklist to make sure that the information that theontext stak was too short is propagated bak to those produtions. If a parseerror ours (line 20), the algorithm terminates with a failure. If the parsingis suessful (line 23), the resulting ontext stak p′ is added to CA.For a prodution of two nonterminals, A → A′A′′, we proeed aording torule §3. For eah ontext stak p in dom(CA) on line 29 we pik the smallestpossible post�x p2 of p that is not in ∆(A′) and propagate this to CA′ . If no suhpost�x exists, we know that p is too short, so we update ∆(A) and W as before.Otherwise, we repeat the proess (line 37) to propagate the resulting ontextstak through A′′ and further to CA (line 46).Finally, on line 57 we hek that rule §1 is satis�ed.Theorem 8. The ParseCFGD algorithm always terminates, and it terminatessuessfully if and only if a solution exists to the onstraints from Setion 4.1for the given CFG.(We leave a proof of this theorem as future work.)Corollary 9. Combining Theorem 7 and Theorem 8, we see that ParseCFGDalways terminates, and it terminates suessfully if and only if the given CFG isvalid. 10

1. funtion ParseCFGD(N,Σ,P, S) :2. delare W ⊆ P, [CA]A∈N : H∗ →֒ P(H∗), ∆ : N → P(H∗)3. // initialize worklist and ontext funtions4. W := [w ∈ P | w defs S]5. for all A ∈ N , p ∈ H∗ do6. CA(p) :=

{

∅ if A = S ∧ p = (root, qroot,∅,∅)

⊥ otherwise7. ∆(A) := ∅8. // iterate until �xpoint9. while W 6= ∅ do10. remove the next prodution A → r from W11. for all p ∈ dom(CA) do12. if A → r is of the form A → s where s ∈ Σ then13. // rule §214. let p′ = ParseD(p, s)15. if p′ = © then16. // reord that entry ontext stak p is too short for A17. ∆(A) := ∆(A) ∪ {p}18. CA(p) := ⊥19. for all w ∈ P where w usesA add w to W20. else if p′ = then21. // fail right away22. fail23. else if p′ /∈ CA(p) then24. // add new �nal ontext stak p′ for A25. CA(p) := CA(p) ∪ {p′}26. for all w ∈ P where w usesA add w to W27. else if A → r is of the form A → A′A′′ where A′, A′′ ∈ N then28. // rule §329. let p2 be the smallest string suh that p = p1 · p2 and p2 6∈ ∆(A′)30. if no suh p2 exists then31. // reord that entry ontext stak p is too short for A32. ∆(A) := ∆(A) ∪ {p}33. CA(p) := ⊥34. for all w ∈ P where w usesA add w to W35. else if p2 ∈ dom(CA′) then36. for all p′
2
∈ CA′ (p2) do37. let t2 be the smallest string suh that p1 · p′

2
= t1 · t2 and t2 6∈ ∆(A′′)38. if no suh t2 exists then39. // reord that entry ontext stak p is too short for A40. ∆(A) := ∆(A) ∪ {p}41. CA(p) := ⊥42. for all w ∈ P where w usesA add w to W43. else if t2 ∈ dom(CA′′) then44. if {t1 · t′

2
| t′

2
∈ CA′′(t2)} 6⊆ CA(p) then45. // add new �nal ontext staks for A46. CA(p) := CA(p) ∪ {t1 · t′

2
| t′

2
∈ CA′′ (t2)}47. for all w ∈ P where w usesA add w to W48. else49. // add new entry ontext stak t2 for A′′50. CA′′(t2) := ∅51. for all w ∈ P where w defsA′′ add w to W52. else53. // add new entry ontext stak p2 for A′54. CA′ (p2) := ∅55. for all w ∈ P where w defsA′ add w to W56. // rule §157. if CS(root, qroot, ∅, ∅) 6⊆ {(root, q, ∅, ∅) | q ∈ F} then58. fail59. return [CA]A∈NFig. 3. The ParseCFGD algorithm for solving the parse onstraints for a given CFG.11

4.3 ExampleAs an example of a normalized grammar, onsider Gul = (N,Σ, P, S) where
N = {A1, A2, A3, A4, A5, A6}, Σ = {, , , }, S = A1, and Ponsists of the following produtions:

A1 → A5 A2 A2 → A6 A3

A3 → A4 →
A5 → A6 →
A6 → A4 A1The language generated byGul onsists of douments that have a ul root elementontaining a single li element that in turn ontains zero or one ul element. Thegrammar an thus generate deeply nested ul and li elements, and trunation ofontext staks is therefore ruial for the ParseCFGD algorithm to terminate.Notie that all end tags are omitted in the douments.We wish to ensure that the strings generated from Gul are valid relative tothe following DTD, whih mimis a very small fration of the HTML DTD forunordered lists:<!ELEMENT ul - - (li*)><!ELEMENT li - O (ul*)>For this ombination of a CFG and a DTD, the ParseCFGD algorithm produesthe following solution to the onstraints:

C

A1 (root, qroot, ∅, ∅) 7→ {(root, q, ∅, ∅)}
(li, qli, ∅, ∅) 7→ {(li, qli, ∅, ∅)}

A2 (ul, qul, ∅, ∅) 7→ {ǫ}
A3 (ul, qul, ∅, ∅) · (li, qli, ∅, ∅) 7→ {ǫ}
A4 (ul, qul, ∅, ∅) 7→ {(ul, qul, ∅, ∅) · (li, qli, ∅, ∅)}
A5 (li, qli, ∅, ∅) 7→ {(li, qli, ∅, ∅) · (ul, qul, ∅, ∅)}

(root, qroot, ∅, ∅) 7→ {(root, q, ∅, ∅) · (ul, qul, ∅, ∅)}
A6 (ul, qul, ∅, ∅) 7→ {(ul, qul, ∅, ∅) · (li, qli, ∅, ∅)}Although the ontext staks may grow arbitrarily when parsing individual do-uments with ParseD, the trunation trik ensures that ParseCFGD terminatesand sueeds in apturing the relevant top-most parts of the ontext staks.5 Experimental ResultsWe have implemented the algorithm from Setion 4.2 in Java, together with ananalysis front-end for onstruting CFGs that soundly approximate the outputof web appliations written with Java Servlets and JSP. The front-end followsthe struture desribed in [6℄, extended with speialized support for JSP, andbuilds on Soot [12℄ and the Java String Analyzer [2℄.The purpose of the prototype implementation is to obtain preliminary an-swers to the following researh questions:12

� What is the typial analysis time for a Servlet/JSP page, and how is theanalysis time a�eted by the absene or presene of validity errors?� What is the preision of the analysis in terms of false positives?� Are the warnings produed by the tool useful to loate the soures of theerrors?We have run the analysis on six open soure programs found on the web. Theprograms range from simple one man projets, suh as the JSP Chat appliation(JSP Chat3), the o�ial J2EE tutorial Servlet and JSP examples (J2EE Book-store 1 and 24) to the widely used blogging framework Pebble5, whih inludeddozens of pages and features. We have also inluded the largest example from abook on JSTL (JSTL Book ex.6) and an appliation named JPivot7. The testshave been performed on a 2.4 GHz Core i5 laptop with 4GB RAM running OSX. As DTD, we use HTML 4.01 Transitional.Figure 4 summarizes the results. For eah program, it shows the number ofJSP pages, the time it takes to run the whole analysis on all pages (exludingthe time used by Soot), the time spent in the CFG parser algorithm, the numberof warnings from the analyzer, and the number of false positives determined bymanual inspetion of the analyzed soure ode.The tool urrently has two limitations, whih we expet to remedy with amodest additional implementation e�ort. First, validation of attributes is ur-rently not supported. Seond, the implementation an trak a validity error tothe plae in the generated Java ode where the invalid element is generated, butnot all the way bak to the JSP soure in the ase of JSP pages.In some ases when an unknown value is inserted into the output withoutesaping speial XML haraters (for example, by using the out tag from JSTL),the front-end is unable to reason about the language of that value. This mayfor instane happen when the value is read from disk or input at runtime. Theanalysis will in suh ases issue an additional warning, whih is not inludedin the ount in Figure 4, and treat the unknown value as a speial alphabetsymbol and ontinue analyzing the grammar. In pratie, there are typially afew suh symbols per page. While they may be indiations of ross site sriptingvulnerabilities, there may also be invariants in the program ensuring that thereis no problem at runtime.The typial analysis time for a single JSP page is around 200-600 ms. As anbe seen from the table, only a small fration of the time is spent on parsing theCFG. The worklist algorithm typially requires between 1 and 100 iterations foreah JSP page, whih means that eah nonterminal is visited between 1 and 10times.Validity errors were found in all the appliations. The following is an exampleof a warning generated by the tool on the JSP Chat appliation:3 http://www.web-teh-india.om/software/jsp_hat.php4 http://download.orale.om/javaee/5/tutorial/do/bnaey.html5 http://pebble.soureforge.net/6 http://www.manning.om/bayern/7 http://jpivot.soureforge.net/ 13

Program Pages Time CFG Parser time Warnings False positivesPebble3 61 24.0 s 369 ms 32 0J2EE Bookstore 14 5 6.7 s 93 ms 5 0J2EE Bookstore 24 7 9.0 s <1 ms 7 0JPivot5 3 2.8 s 8 ms 2 0JSP Chat6 14 6.8 s 100 ms 12 0JSTL Book ex.7 14 4.9 s 24 ms 6 0Fig. 4. Analysis times and results for various open soure web appliations written inJava Servlets and JSP.ERROR: Invalid string printed indk.bris.servletvalidator.jsp.generated.editInfo_jsp on line 94:Start tag INPUT not allowed in TBODYParse ontext is [root HTML BODY DIV CENTER FORM TABLE TBODY℄This warning indiates that the programmer forgot both a tr start tag and a tdstart tag in whih the input element would be allowed, ausing the input tagto appear diretly inside the tbody element. This may very well lead to browsersrendering the page di�erently.The reason that all JSP pages of the J2EE Bookstore appliations are invalidit that there is an unmathed </enter> tag and a nonstandard <omment> tagin a header used by all pages. After removing these two tags, only one page ofthis appliation is (orretly) rejeted by the analysis. While Pebble seems to beprogrammed with the goal of only outputting valid HTML, the general problemin this web appliation is that the table, ul, and tr elements require non-emptyontents, whih is not always respeted by Pebble. Furthermore, several moreserious errors, suh as forgotten td tags, exist in the appliation. The JSP Chatappliation is written in JSP but makes heavy use of embedded Java ode. Thetool is able to analyze it preisely enough to �nd several errors that are mostlydue to unobvious (but feasible) �ow in the program.Based on the warnings generated by the tool, we managed to manually orretall the errors within a few hours without any prior knowledge of the applia-tions. After running the analysis again, no more warnings were produed. Thisseond round of analysis took essentially the same time as before the errors wereorreted. Sine the analysis is sound, we an trust that the appliations afterthe orretions annot output invalid HTML.6 ConlusionWe have presented an algorithm for validating ontext-free sets of doumentsrelative to an HTML DTD. The key idea � to generalize a parsing algorithmfor SGML to work on grammars instead of onrete douments � has lead toan approah that smoothly handles the intriate features of HTML, in parti-ular tag omissions and exeptions. Preliminary experiments with our prototypeimplementation indiate that the approah is su�iently e�ient and preise tofuntion as a pratially useful tool during development of web appliations. In14

future work, we plan to improve the tool to aommodate for attributes and totrae error messages all the way bak to the JSP soure (whih is triky beauseof the JSP tag �le mehanism) and to perform a more extensive evaluation.Referenes1. Shan Chen, Dan Hong, and Vinent Y. Shen. An experimental study on validationproblems with existing HTML webpages. In Pro. International Conferene onInternet Computing, ICOMP '05, June 2005.2. Aske Simon Christensen, Anders Møller, and Mihael I. Shwartzbah. Preiseanalysis of string expressions. In Pro. 10th International Stati Analysis Sympo-sium, SAS '03, volume 2694 of LNCS, pages 1�18. Springer-Verlag, June 2003.3. Kyung-Goo Doh, Hyunha Kim, and David A. Shmidt. Abstrat parsing: Statianalysis of dynamially generated string output using LR-parsing tehnology. InPro. 16th International Stati Analysis Symposium, SAS '09, volume 5673 ofLNCS. Springer-Verlag, August 2009.4. Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1991.5. John E. Hoproft and Je�rey D. Ullman. Introdution to Automata Theory, Lan-guages and Computation. Addison-Wesley, 1979.6. Christian Kirkegaard and Anders Møller. Stati analysis for Java Servlets and JSP.In Pro. 13th International Stati Analysis Symposium, SAS '06, volume 4134 ofLNCS. Springer-Verlag, August 2006.7. Yasuhiko Minamide. Stati approximation of dynamially generated Web pages.In Pro. 14th International Conferene on World Wide Web, WWW '05, pages432�441. ACM, May 2005.8. Yasuhiko Minamide and Akihiko Tozawa. XML validation for ontext-free gram-mars. In Pro. 4th Asian Symposium on Programming Languages and Systems,APLAS '06, November 2006.9. Anders Møller and Mihael I. Shwartzbah. The design spae of type hekersfor XML transformation languages. In Pro. 10th International Conferene onDatabase Theory, ICDT '05, volume 3363 of LNCS, pages 17�36. Springer-Verlag,January 2005.10. Takuya Nishiyama and Yasuhiko Minamide. A translation from the HTML DTDinto a regular hedge grammar. In Pro. 13th International Conferene on Imple-mentation and Appliation of Automata, CIAA '08, volume 5148 of LNCS, July2008.11. Peter Thiemann. Grammar-based analysis of string expressions. In Pro. ACMSIGPLAN International Workshop on Types in Languages Design and Implemen-tation, TLDI '05, 2005.12. Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrik Lam, Etienne Gagnon,and Phong Co. Soot � a Java optimization framework. In Pro. IBM Centre forAdvaned Studies Conferene, CASCON '99. IBM, November 1999.13. Jos Warmer and Sylvia van Egmond. The implementation of the AmsterdamSGML parser. Eletroni Publishing, 2(2):65�90, 1988.
15

A Proof of Theorem 7We begin with some lemmas and a proposition that help us give a simple proof ofthe theorem. The �rst lemma shows a ompositionality property of the ParseDfuntion:Lemma 10. Given p ∈ H∗ and x1, x2 ∈ Σ∗, let p′ = ParseD(p, x1). If p′ ∈
{ ,©} then ParseD(p, x1x2) = p′; otherwise ParseD(p, x1x2) = ParseD(p′, x2).Another property of ParseD is that providing a larger ontext stak annot leadto more parse errors:Lemma 11. Given p1, p2 ∈ H∗ and x ∈ Σ∗, let p′ = ParseD(p2, x). If p′ 6= ©then ParseD(p1 · p2, x) = p′.(We omit the proofs of these lemmas.)We heneforth abbreviate the initial ontext stak by ⋄:

⋄ = (root, qroot, ∅, ∅)The following proposition aptures the essential properties that were de-sribed intuitively in Setion 4.1 of solutions to the ontext funtion onstraints:Proposition 12. Assume x ∈ L(G) and [CA]A∈N satis�es the onstraints fromSetion 4.1 for a given CFG G. Let A be a nonterminal used in a derivation of
x suh that S ⇒∗ u1Au2 ⇒∗ u1yu2 = x for some u1, y, u2 ∈ Σ∗. Now, [CA]A∈Nhas the following properties:(a) Let p = ParseD(⋄, u1). If p /∈ { ,©} then there exist p1, p2 ∈ H∗ suh that

p = p1 · p2 and p2 ∈ dom(CA). That is, dom(CA) ontains a post�x p2 of theontext stak that arises after parsing u1, unless a parse error has ourred.(b) Let p′ = ParseD(p2, y) for some p2 ∈ dom(CA). If p′ /∈ { ,©} then p′ ∈
CA(p2). That is, CA(p2) ontains the ontext stak that arises after parsing
y if starting in the ontext stak p2 and no parse error ours.(In fat, as we show later, parse errors annot our when there exists a solutionto the onstraints.)Proof. Consider a left-to-right depth-�rst traversal of a derivation tree of x wherewe visit eah node (orresponding to a terminal or a nonterminal) both on theway down and the way up. We now show by indution in k = 0, 1, 2, . . . that (1)all the nonterminal nodes that have been visited on the way down (and maybealso on the way up) after the �rst k steps of this traversal have property (a),and (2) all the nonterminal nodes that have been visited both on the way downand on the way up after the �rst k steps of this traversal have property (b).For the base ase, k = 0, we only need to show that ⋄ ∈ dom(CA), howeverthis follows diretly from rule §1 (see Setion 4.1).For the indution step, k > 0, if the node being visited is a terminal, ourgoal follows immediately from the indution hypothesis. If the node is instead16

a nonterminal, we split into two ases: either the k'th step is downward or it isupward. If it is downward, we are visiting a nonterminal node A′ with a rightsibling A′′ and a parent A, or a nonterminal node A′′ with a left sibling A′and a parent A, orresponding to a prodution on the form A → A′A′′. Weneed to show that the new node being visited satis�es property (a). Now, u1 isthe string formed by the sequene of terminals visited so far. By the indutionhypothesis, dom(CA) ontains a post�x of ParseD(⋄, u1), and by the �rst lineof rule §3, dom(CA′) thereby also ontains a post�x of ParseD(⋄, u1), heneproperty (a) is satis�ed. The ase for A′′ is similar, using the seond line ofrule §3. If the k'th step is instead upward, we need to show that the new nodebeing visited satis�es property (b). (Property (a) follows immediately from theindution hypothesis.) Let A be the nonterminal of the node. Either the nodehas a single hild, orresponding to a prodution of the form A → s, or twohildren, orresponding to a prodution of the form A → A′A′′. In the formerase, property (b) follows from rule §2; in the latter ase, we use rule §3.The proof of Theorem 7 has two parts:1. We �rst show that the CFG G is valid (aording to De�nition 6) if thereexists some [CA]A∈N that satis�es the onstraints from Setion 4.1.Let x ∈ L(G) and p′ = ParseD(⋄, x). From rule §1 we know that ⋄ ∈
dom(CS). By part (b) of Proposition 12, either p′ ∈ { ,©} or p′ ∈ CS(⋄). How-ever, p′ ∈ { ,©} is not possible. To see this, assume p′ ∈ { ,©} and let x =
s1s2 · · · sn where s1, s2, . . . , sn ∈ Σ. Then there exists a position i ∈ {1, . . . , n}suh that p′′ = ParseD(⋄, s1s2 · · · si−1) /∈ { ,©} and ParseD(⋄, s1s2 · · · si) ∈
{ ,©}. Let A be the nonterminal that derives si in x. Part (a) of Proposi-tion 12 now tells us that dom(CA) ontains a post�x p′′2 of p′′, and by rule §2,
ParseD(p′′2 , si) /∈ { ,©}. Lemma 11 then gives us that ParseD(p′′, si) /∈ { ,©}.By Lemma 10, ParseD(⋄, s1s2 · · · si) = ParseD(p′′, si) /∈ { ,©}, whih ontra-dits ParseD(⋄, s1s2 · · · si) ∈ { ,©}. Thus, p′ /∈ { ,©}, so p′ ∈ CS(⋄). By rule
§1, CS(⋄) ⊆ {(root, q, ∅, ∅) | q ∈ F}, so p′ = (root, q, ∅, ∅) for some q ∈ F , whihmeans that x is valid aording to De�nition 3.2. Next, we show onversely that validity of G implies that a (not neessarily�nite) solution exists to the onstraints.Assume G is valid. Construt [CA]A∈N as follows, for eah A ∈ N :

dom(CA) =
⋃

S⇒∗u1Au2 where u1,u2∈Σ∗

ParseD(⋄, u1)

CA(p) =
⋃

A⇒∗y where y∈Σ∗

ParseD(p, y) for any p ∈ dom(CA)That is, we onstrut the ontext funtions suh that dom(CA) ontains all on-text staks that may appear when entering A, without performing any trun-ation, and similarly for their output. (Note that these appliations of ParseDnever return or© due to Lemma 10 sine G is assumed to be valid, so dom(CA)17

and CA(p) are well-de�ned.) With this onstrution, we argue that [CA]A∈N is asolution to the onstraints:� Rule §1 is satis�ed beause, by onstrution, CS(⋄) = ⋃

S⇒∗y ParseD(⋄, y),and y ∈ Σ∗ is valid when S ⇒∗ y.� To see that rule §2 is satis�ed, onsider a prodution of the form A → sin P where s ∈ Σ, and assume p ∈ dom(CA) and p′ = ParseD(p, s). Byonstrution of dom(CA), we have p = ParseD(⋄, u1) where S ⇒∗ u1Au2for some u1, u2 ∈ Σ∗. Now, p′ ∈ { ,©} would ontradit the assumptionthat G is valid using Lemma 10 as above, so p′ /∈ { ,©}. By onstrutionof CA(p), we also get p′ ∈ CA(p).� Rule §3 is satis�ed for any prodution A → A′A′′ beause no trunationappears in our present onstrution of dom(CA), so the following property issatis�ed, whih learly implies the ondition in rule §3:
∀p ∈ dom(CA) : p ∈ dom(CA′) ∧

∀p′ ∈ CA′(p) : p′ ∈ dom(CA′′) ∧
∀p′′ ∈ CA′′(p′) ⇒ p′′ ∈ CA(p)To see that this property is satis�ed, onsider derivations of the form S ⇒∗

u1Au2 ⇒ u1A
′A′′u2 ⇒∗ u1y1A

′′u2 ⇒∗ u1y1y2u2 where u1, u2, y1, y2 ∈ Σ∗.The �rst line then diretly follows from the onstrution of dom(CA). Forthe seond line, we have p ∈ ParseD(⋄, u1) and p′ ∈ ParseD(p, y1). ByLemma 10, p′ ∈ ParseD(⋄, u1y1) so p′ ∈ dom(CA′′). For the third line,we have p′′ ∈ ParseD(p′, y2), and p′′ ∈ ParseD(p, y1y2) then follows fromLemma 10.

18

