Sparse Dataflow Analysis with Pointers and Reachability

Magnus Madsen and Anders Møller


Many static analyzers exploit sparseness techniques to reduce the amount of information being propagated and stored during analysis. Although several variations are described in the literature, no existing technique is suitable for analyzing JavaScript code. In this paper, we point out the need for a sparse analysis framework that supports pointers and reachability. We present such a framework, which uses static single assignment form for heap addresses and computes def-use information on-the-fly. We also show that essential information about dominating definitions can be maintained efficiently using quadtrees. The framework is presented as a systematic modification of a traditional dataflow analysis algorithm.

Our experimental results demonstrate the effectiveness of the technique for a suite of JavaScript programs. By also comparing the performance with an idealized staged approach that computes pointer information with a pre-analysis, we show that the cost of computing def-use information on-the-fly is remarkably small.

[PDF | BibTeX]

© 2014 Springer-Verlag